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Abstract—Dynamic cone-beam reconstruction algorithms are 
required to reconstruct 3D image sequences on dynamic 3D CT 
combining multi-row 2D detectors and ultra-fast rotating gantry. 
In order to compensate for time evolution and motion artifacts, 
we propose to use a dynamic particle model to describe the object 
evolution. One main interest is to process data acquisition on 
several half-turns in order to reduce the dose delivered per 
rotation with the same signal to noise ratio. We describe the 
dynamic particle model and its approximations, the dynamic 
cone-beam CT acquisition model and the dynamic cone-beam 
reconstruction algorithm based on a cone-beam to fan-parallel 
beam rebinning approach. 
 

Index Terms—Dynamic tomographic imaging, fully four-
dimensional image reconstruction, CT Fluoroscopy, cone-beam, 
particle model, motion compensation, time evolution. 

I. INTRODUCTION 

HE purpose of dynamic computed tomography (CT) 
imaging is to reconstruct tomographic image sequences of 

dynamic  organs in order to take into account the dynamic 
nature of a living human body. The description of dynamic 
organs includes both time evolution and motion. In this 
publication, we mainly focus on dynamic 3D Computed 
Tomography combining multi-row 2D detectors and ultra-fast 
rotating gantry. The main applications are 3D CT Fluoroscopy 
for interventionnal radiology, to help the radiologist to guide 
biopsy needles through soft tissues like the lung, radiotherapy 
planning to better delineate the tumour and healthy tissues 
during motion, heart diagnostic imaging to study heart kinetic 
or to reconstruct coronary arteries. 

LETI is involved in the European project DynCT (IST - 
1999 - 10515) dedicated to both real time and off-line motion 
compensated reconstruction and visualisation for dynamic 
computed tomography. Only the real time case is described 
here. In this presentation, we introduce the theoretical 
framework of a new dynamic cone-beam reconstruction 
algorithm based on a dynamic particle model. Standard 
approach tends to use a short scan acquisition over one half-
turn without motion compensation [Taguchi, 2000]. But it  
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implies to increase the dose delivered per rotation to preserve 
the signal to noise ratio. Using the dynamic particle model to 
compensate for dynamic evolution, it becomes possible to 
increase the acquisition time window over several half-turns, 
up to 4 in our case, in order to reduce the dose delivered per 
rotation to the patient with the same signal to noise ratio. 

In [Hsieh, 1997] the impact of various reconstruction 
algorithms on 2D CT Fluoroscopy is investigated and inherent 
limitations of the CT Fluoroscopy in terms of time lag and 
delay is demonstrated. In [Taguchi, 1998], the authors propose 
to use a feathering technique to suppress an image artifact 
which rotates like a radar search line and sometimes hinders 
accurate observations. In [Ritchie, 1996], the reduction of in 
plane motion artifacts is achieved using a pixel-specific back 
projection technique in 2D. In [Schäffter, 1999] a motion 
compensated projection reconstruction algorithm is proposed 
for the reduction of blurring artifacts in MRI using motion 
estimation applied on a first set of low resolution 
reconstructed images. The new algorithm proposed here uses 
also this double reconstruction principle. It allows to 
compensate for both time evolution and motion. 

II. THE DYNAMIC PARTICLE MODEL 

We consider the image function f as the map of the physical 
property we want to study, in the present case the X-ray linear 
attenuation coefficient or the density. This function f is 
defined in a (O, x, y z) cartesian coordinate system. We 
represent by f (M, t) = f (x, y, z, t) the value of the function f at 
the point M of coordinate (x, y, z), at the time instant t. We 
suppose here that the function f is sufficiently smooth and 
vanishes outside a ball Ω of radius R0. 

In order to define the particle model, we describe at the 
reference instant t0 the object as a continuum of particles 
associated with each point M of the support Ω. We define the 
trajectory Γ(M, t) associated with this point M as the set of 
positions this point M will take at each time value t within Ω. 
By definition, M corresponds to the initial position along the 
trajectory Γ(M, t): 
Γ(M, t0) = M (1) 

In the following, the image sequence will be reconstructed 
at discrete time samples ti. 

In the more general case where both time evolution and 
motion have to be taken into account, the function f may vary 
along the trajectory Γ. Thus, the general function expression 
associated with the dynamic particle model is given by the 
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formula f(Γ(M,t),t), where Γ(M,t)∈Ω and t∈R. This 
corresponds to a continuous expression of the discrete particle 
models used in computer graphics to describe deformable 
objects [Lombardo, 1996]. 

One example is a flying ball of constant radius which 
content might vary along time due to contrast product 
injection or to matter exchange with the neighbouring flying 
balls. In the special case of matter conservation and non-
compressible material, it would be equivalent to assume the 
content remains constant along time. 

The time evolution compensation will be based on the first 
order approximation of the expression f(Γ(M,t),t), in the 
neighborhood of the discrete time sample ti: 

f(Γ(M,t),t)≈f(Γ(M,ti),ti)+[<∇f,
t∂

Γ∂
(M,ti)>+

t

f

∂

∂
(Γ(M,ti),ti](t-ti)  

 (2) 
where ∇f is the gradient of f and < , > the scalar product. 

When the object fulfills the mass conservation principle and 
is irreducible, the term in bracket [] is null and we get:  

( )( ) ( )( )it , it,Mft , t,Mf Γ=Γ  (3) 
However, in the reality, some important tissues like the lung 

are reducible and since the organs may move outside the field 
of view, the mass conservation principle is not always 
fulfilled. Thus we need to consider the general case. 

In order to later simplify the computation, we introduce a 
cartoon like step-by-step motion law : 
Γ(M,t) = Γ(M,ti) for ti≤t<ti + 1 (4) 

Then, since 
t∂

Γ∂
is null, the first order approximation (2) of 

the dynamic model becomes: 

( )( ) ( )( ) ( )( )( )ittit , it,M
t
fit , it,Mft , t,Mf −⋅Γ

∂
∂+Γ=Γ  (5) 

In this case, this formula (6) can be approximated by a 
linear prediction law with respect to t between two time 
samples, for instance ti and ti – T, where T is the rotation 
period of the continuously rotating scanner: 

( )( ) ( )( )

( )( ) ( )( ) ( )itt
T

Tit , it,Mfit , it,Mf

it , it,Mft , t,Mf

−⋅
−Γ−Γ

+Γ≈Γ





   (6) 

III. THE DYNAMIC CONE-BEAM CT ACQUISITION MODEL 

1. Dynamic cone-beam projection 
We consider the cone-beam geometry associated with a 

curved multi-row detector centred on the X-ray source F as 
described on the figure 1. 

The dynamic cone-beam geometry is parametrized by the 
angle β between (F,O) and y axis, the angle γ between the 
detector column and the (F,O) axis, the row height qd with 
respect to the trajectory plane, and the acquisition time t (see 
fig. 1). It is defined as follows :  

( ) ( )
( )
∫=γβ

γβ∈ dq , , DM
dc dMt,Mf t,q,,fX  (7) 

where D(β,γ,qd) is the straight line between the source point F 
and the detector cell Ad. In order to model a continuously 
rotating acquisition process, we state the following relation : 
β(t) = β0 + ω.t (8) 
where ω defines the angular rotation speed. For a CT scanner 
with a 0.5 s rotation period, ω = 4π rad.s-1.  

In the following, we assume the angle γ belongs to [-γm,+γm] 
where γm is the half fan angle. In our case we choose 

.rad
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Figure 1 : cone-beam geometry. 

2. Dynamic fan-parallel projection 
The reconstruction will be done via the line rebinning 

approach in fan-parallel projection as suggested in [Grass, 
2000]. 

The fan-parallel geometry is defined by a virtual planar 
detector placed on the rotation axis with coordinates p parallel 
to the trajectory and q parallel to the rotation axis. We define 
ϕ as the angle between the virtual detector and the (0,x) axis. 
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 Figure 2 : fan-parallel-beam geometry. 
The dynamic fan-parallel projection is defined as follows : 

( ) ( )
( )
∫=ϕ
ϕ∈

ρ
q ,p , DM

f dMt,Mf t,q,p,fX  (9) 

In the ideal case, the full fan-parallel projection data set is 
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available for each t. Then, the short scan dynamic fan-parallel 
reconstruction formula is: 

f(Γ(M,t),t) = ∫
π ϕΓϕ0 d  t) t)],(M, [ A ,( HDYf  (10) 

where Yf is the weighted fan-parallel projection: 
Yf(ϕ,A,t) = Xfp,f(ϕ,A,t).w(A) (11) 

and w(A) = 
2

q 
2

p - 
2

R

2
p - 

2
R

+
 

A [Γ (M, t)] is the fan-parallel projection of the point Γ(M,t) 
onto the virtual detector, with detector coordinates p,q. 

HDYf is the weighted projection Yf convoluted along the 
transverse row by the ramp filter HD(p). 

IV. THE DYNAMIC CONE-BEAM RECONSTRUCTION ALGORITHM 

The reconstruction algorithm described here is dedicated to 
3D CT fluoroscopy, assuming a real-time reconstruction 
processing at a frame rate of 12 frames per second for a gantry 
rotation period T of 0.5 s. 

1. The sliding window principle 
Let us consider the discrete fan-parallel angles : 

ϕi = i ∆ϕ (12) 
where ∆ϕ is the angular step between two reconstructed 
frames. In the following, we assume ∆ϕ = 2. γm.. It means we 
divide the full rotation in constant angular positions separated 

from the full fan angle 2. γm equal to 
3
π . For a 0.5 s gantry 

rotation period, this corresponds to a frame rate of 12 images 
per second. 

The associated discrete reconstruction time ti associated 
with the last projection of the angular range [ϕi, ϕi+∆ϕ] is : 

ti = 
( )

ω

βγ+ϕ∆+ϕ 0m
 -    i  (13) 

where 
ω

γm  corresponds to the rebinning latency delay to 

begin the fan-parallel reconstruction. 
 

We define the overscan ϕ angular range to compute 
f(Γ(M,ti),ti) as the ϕ sliding window [ϕi- n.π, ϕi+∆ϕ] where n 
represents the number of half-turns on which we want to 
smooth the data to improve the signal to noise ratio or to 
reduce the dose.  

The associated β angular range defined by the following 
rebinning equation (14) is the β sliding window 

[ϕi-(n.π+
2

β∆
),ϕi+

2

3
∆β], where ∆β=∆ϕ=2.γm. 

The sliding window principle is that a new frame is 
computed for each new ti value. This new frame corresponds 
to a shift of the β sliding window from ∆β, and the associated 
shift of the ϕ sliding window from ∆ϕ. 

2. The cone-beam to fan-parall-beam rebinning 
We get the following rebinning equation : 

Xfpf(ϕ, p, q, t) = Xcf(β, γ, qd, t) (14) 
with :  
 β = ϕ - γ 
 

γ = arc sin 




−

R
p

  (15) 
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However, we need to compute Xfpf(ϕ, p, q ti) at ti, the 
reconstruction time associated with the time range [ti – 1, ti]. 

When the time difference (ti-t) is small, we can use a nearest 
neighbour interpolation: 
Xfpf(ϕ,p,q,ti) = Xfpf(ϕ,p,q,t) (16) 

Otherwise, if the sliding window is larger than 2π, using the 
linear interpolation model associated with equation (6) we get 
the following extrapolation formula : 

Xfpf(ϕ,p,q,ti)=
( )
T

T -t  - t i
Xcf(β,γ,qd,t) + 

T
 t- t i Xcf(β,γ,qd,t-T) 

 (17) 
where T is the gantry rotation period. 

3. Block reconstruction 

We split the ϕ angular range into elementary projection blocks 

of size ∆ϕ = 
3

π
. We denote BHDYf(Γ(M,t),t,ϕi) the partial 

block backprojection over the projection angular [ϕi, ϕi + ∆ϕ]: 

BHDYf(Γ(M, t),t,ϕi) = ( )[ ]( ) ϕ∫ ϕ∆+ϕ
ϕ=ϕ Γϕ  d    
   t, tM,  A , HDYfi

i
 

 (18) 
For seak of simplicity, we assume here we want to 

reconstruct the function at the instant t = t0. Thus Γ(M,t) = M. 
The following result can then be generalized for each ti time 
by shifting the sliding window. 

From the reconstruction formula (10), we get: 

f(M,t0) = ( ) ϕϕ∫
π

d t[M], A , f HDY  
0

0  (19) 

Since ∆ϕ = 
3

π
, we can decompose this integral into 3 terms 

associated with 3 partial block backprojections sectors [0, 
3
π ], 

[
3
π ,

3
2π ], [

3
2π ,π]: 

f(M,t0) = ∑
=

ϕ
2

0  i
) t(M, f BHDY
i0  ,  (20) 

The dynamic evolution compensation will take place in the 
estimation of each partial block backprojection as described in 
the next section. 

4. Dynamic evolution compensation 
Given an angular sector i, let us take a set of Nb partial 

block projection acquired in the past for the same angular 
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range modulo π : 
ϕij = ϕi – j.π j = 0,...., Nb - 1 

We get for each M point a set of values along the Γ(M,t) 
trajectory for each associated block instant BHDYf(Γ(M,tij),tij 
ϕij), where tij is the time associated with ϕij according to 
equation (13). Using the first order approximation (2) of the 
dynamic particle model, we get : 

f(Γ(M,tij),tij) ≈ f(M,t0)+[<∇f,
t∂

Γ∂
(M,t0)>+

t

f

∂

∂
(M,t0)](tij-t0) 

 (21) 
Under the piecewise constant motion hypothesis (4), as no 

motion occurs during the block angular range, the same 
relation holds for the partial backprojection: 
BHDYf(Γ(M,tij),tij,ϕij) ≈ BHDYf(M,t0,ϕi0) + a(M,ϕi0).(tij-t0) 
 (22) 
Thus, the terms BHDYf(M,t0,ϕi0) and a(M,ϕi0) can be 
computed by linear regression on the discrete sample set: 

( )( ){ } { }1-Nb , ... 0,  j    , t, tM,  BHDYf ijijij ∈ϕΓ . 

In order to apply such a linear regression, we need to have 
at least two samples belonging to the sliding window. 
Otherwise using the same relation, we can only compensate 
for motion, and not for time evolution. The motion 
compensation equation is given by: 
BHDYf(Γ(M,tij),tij,ϕij) = BHDYf(M,t0,ϕi0) (23) 

This is equivalent to choose a zero order regression model. 
In every case, it is important to note that using an overscan 
range within the sliding window, the dynamic evolution 
compensation by regression introduces a principle equivalent 
to the feathering technique used by different authors in CT 
fluoroscopy [Taguchi, 1998]. 

5. Motion estimation 
In the previous sections, we have assumed we can measure 

the motion field between M and Γ (M, tij). However, as this 
motion field is unknown, we need to estimate it. We present 
here only the basic idea. Detailed explanation will be given in 
the final version. 

The first order approximation (2) can be interpreted as the 
sum of a spatial shift term and a time evolution term. In first 
approximation, we will assume here that the shift can be 
approximated by a translation motion at constant speed: 

Γ(M,t) = M + D(M).
( )

T

 tt2
0

−
 (24) 

where D(M) is the displacement of the point M after a π 
rotation of the gantry and T is the gantry rotation period. 

The reconstruction process without motion compensation 
will produce a blurred image. However, the reconstruction 
after a π rotation will produce the same blurred image, shifted 
from the displacement vector D(M). Thus, using a correlation 
principle, it will be possible to estimate this displacement 
vector. Such a correlation approach should not be too much 
disturbed by time evolution. 

In order to reduce the blurring spread, the image sequence 
needed to evaluate the motion should be reconstructed with 

the smallest temporal resolution corresponding to a half-turn 
rotation. 

In fact, we need to get the full motion field over the region 
to reconstruct. The actual technique we use is a block 
matching approach as for motion estimation in MPEG coding 
[Sikora, 1997]. 

One other important issue is the ability to detect when the 
particle trajectory goes outside the region of interest. In the 
approach described here, we can detect it since the correlation 
fails. The prediction should be applied only to those points 
which are inside the region of interest. To manage this issue, 
we estimate for each motion vector a confidence factor 
associated with the correlation factor, and we take it into 
account within the estimation of the prediction rule 
coefficients given by the equation (22). 

V. CONCLUSION 

In this paper, we present the outline of the theoretical 
framework for time evolution and motion compensation in 
dynamic cone-beam reconstruction algorithm using a dynamic 
particle model. The principle described here for a line 
rebinning algorithm can also be applied to direct cone-beam 
reconstruction algorithm such as Feldkamp algorithm. 

However, according to [Grass, 2000], this line rebinning 
approach can be generalized to reconstruct a larger region of 
interest by correctly handling the line shadow zone region. 
The approach described here can also be extended to such a 
case. Further investigation are needed to extend this dynamic 
approach to indirect plane rebinning algorithm via the first 
derivative of the Radon transform using Grangeat formula. 

Preliminary results will be presented at the conference. 
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